## Mesure de la masse du neutrino

F. Piquemal

Laboratoire Souterrain de Modane (CNRS et CEA) et Centre d'Etudes Nucléaires de Bordeaux Gradignan (Université Bordeaux I et IN2P3)

> Ecole de Gif 2011 APC Paris Septembre 2011

### Mesure de la masse du neutrino

Présentation de l'état de l'art expérimental

- Résultats actuels
- Mesure par désintégration beta simple
- Mesure par double désintégration bêta

## Masse du neutrino ?

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\begin{array}{c|c} \begin{array}{c} \mbox{Atmospheric}\\ \mbox{K2K} \end{array} & \begin{array}{c} \mbox{Reactors (CHOOZ)}\\ \mbox{Accelerators (JPARC)} \end{array} & \begin{array}{c} \mbox{Solar}\\ \mbox{Reactors} \end{array} \\ \end{array}$$

## Masse du neutrino ?

Beta decay  $m_v = (\Sigma |U_{ei}|^2 m_i^2)^{1/2} < 2.3 \text{ eV}$ Double beta decay  $|< m_v > | = |\Sigma U_{ei}^2 m_i| < 0.2 - 0.8 \text{ eV}$ 



 $\Sigma m_i = m_1 + m_2 + m_3 < 0.44 - 0.76 \text{ eV}$ 



## Masse du neutrino: Astrophysique et cosmologie

Astrophysique: neutrino émis par SN 1987A

$$\Delta t = 5.15 \left(\frac{m_v}{1 \, eV}\right)^2 \left(\frac{10 \, MeV}{E^2}\right) \frac{D}{10 \, kpc} \, ms$$

 $m(v_e) < 5.8 \text{ eV}$  (95 %CL)

**Cosmologie:** Structure à grande échelle, anisotropie du fond cosmologique



## Masse du neutrino: mesures directes

$$\begin{array}{ccc} \mathsf{m}(\mathsf{v}_{\mu}) & : & \pi^{+} \Diamond \mu^{+} + \mathsf{v}_{\mu} \\ & \pi^{-} \Diamond \mu^{-} + \mathsf{v}_{\mu} \end{array} & m^{2}(\nu_{\mu}) = m^{2}(\pi) + m^{2}(\mu) - 2 \cdot m(\pi) \cdot \sqrt{m^{2}(\mu) + p^{2}(\mu)} \end{array}$$

Limité par la précision du la masse du pion m( $\pi$ ) et du m( $\mu$ ) et du moment du muons p( $\mu$ ) lors de la décroissance du pion au repos

 $m(v_{\mu}) < 190 \text{ keV} (90 \% \text{CL})$ 

 $m(v_{\tau})$ : Décroissance du  $\tau$  en 5 ou 6  $\pi$ 

 $m(v_{\tau}) < 18. MeV (95 \% CL)$ 



(A,Z)  $\rightarrow$  (A,Z+1) +  $e^-$  +  $\bar{v}_e$ 

- Principe très simple
- Réalisation très délicate







$$\frac{dN}{dE} \propto |M|^2 \cdot F(E, Z) \cdot p \cdot W \cdot \varepsilon^2 \cdot \sqrt{1 - \frac{m_v^2}{\varepsilon^2}}$$

P,W: impulsion et énergie de l'électron

 $\epsilon = E_0 - E$ : énergie du neutrino avec E0 =  $E_{max}$  quand  $m_v = 0$ 

F(E,Z) Fonction de fermi: - Effets coulombiens corrigés des effets relativistes

- Rayon + distribution de charge du noyau
- Ecrantage du cortège électronique
- Corrections radiatives



$$K(E) \propto \sqrt{\frac{dN/dE}{FpW}}$$

Sensibilité à  $m_v$  seulement en fin de spectre



Fraction of decay in 
$$[Q_{\beta} - m_{\nu}, Q_{\beta}] \sim (m_{\nu}/Q_{\beta}^{3})$$

lowest Q<sub>β</sub> value High counting rate Low background Energy resolution ~ m<sub>v</sub>



### **MAC-E** spectrometers



- Acceptance angulaire élevée (2 π)
- Trajectoires parallélisées
- Analyse électrostatique

### Solenoid Retarding Spectrometer: MAINZ experiment Integral Electrostatic Spectrometer with adiabatic Magnetic Collimation : TROITZK



### Difficultés inhérente à la méthode électrostatique

• Source



• Mesure de l'énergie

Résolution de l'ordre de la limite sur  $m_v$ 

Détecteur

Réponse vs taux comptage Fond liés aux cosmique, radon, radioactivité naturelle

Spectre non gaussien lié à l'utilisation de fente

n han a 💐 har han a dawa wa hara a 🖅 👘 har han a dawa wa hara a dawa wa hara a 🖊 hara a dawa wa hara a 🖉 hara a dawa wa hara a



#### B et E ajustés pour que le mouvement soit adiabatique

#### μ : moment magnétique de l'orbite cyclotron est un invariant adiabatique

$$\rightarrow$$
  $\rightarrow$  Barrière de potentiel DE  $\sim B_{min}/B_{max}$  E  
E<sub>T</sub> = - $\mu$  . B Filtre passe haut



#### Pertes d'énergie:

- interaction inélastiques, excitation et ionisation sur les électrons de la source

Dans  $T_2$  en moyenne perte de 30 eV par interaction

#### Minimisation des systématiques:

- épaisseur < interaction pour minimiser probabilité d'interaction
- Z =1
- Importance uniformité de la source
- Evaluation de la transmission avec E monoenergétiques

$$\frac{dN}{dE} \propto |M|^2 \cdot F(E, Z) \cdot p \cdot W \cdot \sum w_i \cdot \varepsilon^2 \cdot \sqrt{1 - \frac{m_{mu}^2}{\varepsilon^2}}$$

X Resolution X pertes énergie

$$W_i$$
: probabilite de tomber sur le niveau i  
 $\varepsilon_i = E_0 - E - v_i$ 



Ecole de gif septembre 2011

## Pourquoi m<sup>2</sup><sub>v</sub> négatif ?

Paramètres du fit: amplitude libre energy maximum (E<sub>0</sub>) masse carré du neutrino bruit de fond

### Les sources d'erreurs systématiques:

Diffusion inélastique dans le film de tritium Excitation des molécules voisines Etat final de la molécule The+ Etat de charge du film source Etat de surface de la source

Mainz : source solid déposée sur un film Troisk: source gazeuse



Roughening transition of T<sub>2</sub> film



Inelastic scattering



Determination of dynamics:  $\Delta E = (45\pm 6) \, k_B$  K

 $\Rightarrow$  no roughening transition below 2 K

L. Fleischmann et al., J. Low Temp Phys. **119** (2000) 615, (with P. Leiderer L. Fleischmann et al., Eur. Phys. J. **B16** (2000) 521 Konstanz)

Deterimination of cross section:

 $\sigma_{tot} = (2.98 \pm 0.16) \cdot 10^{-18} \text{ cm}^2$ 

Determination of energy loss function:

V.N. Aseev et al., Eur. Phys. J. D10 (2000) 39

Self charging of T<sub>2</sub> film



Determination of critical field:

 $E_c = (63 \pm 4)$  MV/m

 $\Rightarrow$  slight broadeing of energy resolution

H. Barth et al., Prog. Part. Nucl. Phys. 40 (1998) 353,B. Bornschein, PhD thesis, publication in preparation



Explication exotique : capture des neutrinos fossiles ! (10<sup>18</sup> /cm<sup>3</sup>)

Ecole de gif septembre 2011





▲E: 0.93 eV (4.8 eV for Mainz)
 Large acceptance
 Statistique 100 days → 1000 days

 $m_{\nu(e)}$  < 0,2 eV/c<sup>2</sup> en 5 ans de données

Mesure à 5 $\sigma$  pour m<sub>v(e)</sub> = 0,35 eV/c<sup>2</sup>



<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)



 $\Rightarrow$  sharp integrating transmission function without tails:

 $\Delta E = E \cdot B_{min} / B_{max} = E \cdot A_{s,eff} / A_{analyse} = 0.93 \text{ eV}, \text{ KATRIN}$ (4.8 eV, Mainz)



#### **Detector:**









#### Les défis: la source gazeuse 4,7 Ci/s

pureté de la source > 95% monitorée en permanence par specstrocpie Laser Raman

 $\Delta U/U < 10^{-6}$  v Précision sur tension < 60 mV vide dans le spectromètre  $10^{-11}$  mbar Dégazage <  $10^{-13}$  bar.l/(s.cm<sup>2</sup>)





#### Nouveau bruit de fonds :

- Electrons delta venant de l'interaction du rayonnement cosmique -> fils de champs
- Radon (30 fois trop haut) piégeage avec azote liquide

#### **Commissioning spectromètre 2012**



|             | calorimeter approach (MARE)                 | spectrometer approach (KATRIN)                    |
|-------------|---------------------------------------------|---------------------------------------------------|
| source      | metallic Re / dielectric AgReO <sub>4</sub> | high purity T <sub>2</sub>                        |
| activity    | low : < 10⁵ β/s, ≈ 1Bq/mg Re                | high: $\approx 10^5 \beta/s$ , 4.7 Ci/s injection |
| technique   | single crystal bolometers                   | electrostatic spectrometer                        |
| solid angle | $4\pi$ (source = detector)                  | 40% of 2π (max. forw. angle 51°)                  |
| response    | entire β-decay energy                       | kinetic energy of β-decay electrons               |
| interval    | entire spectrum                             | narrow interval close to E <sub>0</sub>           |
| method      | differential energy spectrum                | integrated energy spectrum                        |
| setup       | modular size, scalable                      | integral design, size limits                      |
| resolution  | $\Delta E \sim 11-25 \text{ eV} (FWHM)$     | ΔE ~ 0.93 eV (100%)                               |



#### **MicroBolometers of ArReO4**

 $^{187}$ Re Q<sub> $\beta$ </sub> = 2.47 keV

Full energy measurement No systematic from source But time response of sensor → pile-up





MARE-I: 300 detectors FWHM ~20 eV  $\tau$  ~100 – 500  $\mu$ s  $\langle m_v \rangle < 2$  –4 eV (5 years) MARE – II : 5000 detectors (~2018) FWHM ~20 eV

> $\tau \sim 1 - 5 \mu s$  $\langle m_{\nu} \rangle < 0.2 \text{ eV}$  (10 years)



### La double désintégration bêta teste différentes propriétés du neutrino

- > Nature of neutrino : Dirac ( $v \neq v$ ) or Majorana (v = v)
- Absolute neutrino mass and neutrino mass hierarchy
- Right-handed current interaction
- > CP violation in leptonic sector
- > Search of Supersymmetry and new particles



 $\beta\beta(2\nu)$ 

Double décroissance bêta avec 2 neutrinos

 $2n \rightarrow 2p + 2e^{-} + 2v_e^{-}$ 



Processus du second ordre de l'interaction faible

#### Prédit par M. Goeppert-Mayer en 1935

#### **Observation directe en 1987**

Mesure masse du neutrino

**ββ(0v)** 

### Double décroissance bêta sans neutrino

2n →2p + 2e<sup>-</sup>



 $\Delta L=2$  interdit par model standard

Prédit par Racah et Furry en 1937

Non obervée jusqu'à présent





## Schechter & Valle, 1982 Independent of mechanism of $0\nu\beta\beta$ decay Majorana neutrino mass will appear in higher order!

# Thus: Observe $0\nu\beta\beta$ decay $\equiv$ Neutrinos are Majorana particles





### Bêta simple interdite énergétiquement ou fortement supprimée par moment angulaire

| Transition                                         | Qaa (keV)                  | Abondance (%) |
|----------------------------------------------------|----------------------------|---------------|
| 146 N.d 146 Sm                                     | 56 ± 5                     | 17            |
| $98M_{\odot} \rightarrow 98R_{\odot}$              | $112 \pm 7$                | 24            |
| $\frac{80C_{\odot}}{80V_{\odot}}$                  | $112 \pm 1$<br>120 $\pm 0$ | 50            |
| $3e \rightarrow Kr$                                | $130 \pm 9$                | 30            |
| $204 \text{IL} \rightarrow 204 \text{DL}$          | $304 \pm 4$                | 4.0           |
| $1920 \rightarrow 192Dt$                           | $410 \pm 2$                | 1             |
| 186W + 186O                                        | $417 \pm 4$                | 41            |
| $100 W \rightarrow 100 Os$                         | $490 \pm 2$                | 29            |
| 170D = 170V I                                      | $534 \pm 4$                | 29            |
| $170 \text{Er} \rightarrow 170 \text{Yd}$          | $654 \pm 2$                | 15            |
| $^{134}Xe \rightarrow ^{134}Ba$                    | $847 \pm 10$               | 10            |
| $^{232}\text{Th} \rightarrow ^{232}\text{U}$       | $858 \pm 6$                | 100           |
| $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$      | $868 \pm 4$                | 32            |
| $^{46}Ca \rightarrow ^{46}Ti$                      | $987 \pm 4$                | -             |
| $^{70}$ Zn $\rightarrow$ $^{70}$ Ge                | $1001 \pm 3$               | 0.6           |
| $^{198}\mathrm{Pt} \rightarrow ^{198}\mathrm{Hg}$  | $1048 \pm 4$               | 7             |
| $^{176}\mathrm{Yb} \rightarrow ^{176}\mathrm{Hf}$  | $1079 \pm 3$               | 13            |
| $^{238}\mathrm{U}  ightarrow ^{238}\mathrm{Pu}$    | $1145 \pm 2$               | 99            |
| $^{94}\mathrm{Zr} \rightarrow ^{94}\mathrm{Mo}$    | $1145 \pm 2$               | 17            |
| $^{154}\mathrm{Sm} \rightarrow ^{154}\mathrm{Gd}$  | $1252 \pm 2$               | 23            |
| ${}^{86}\mathrm{Kr}  ightarrow {}^{86}\mathrm{Sr}$ | $1256 \pm 5$               | 17            |
| $^{104}\mathrm{Ru} \rightarrow ^{104}\mathrm{Pd}$  | $1299 \pm 4$               | 19            |
| $^{142}\mathrm{Ce} \rightarrow ^{142}\mathrm{Nd}$  | $1418 \pm 3$               | 11            |
| $^{160}\text{Gd} \rightarrow ^{160}\text{Dy}$      | $1729 \pm 1$               | 22            |
| $^{148}\mathrm{Nd} \rightarrow ^{148}\mathrm{Sm}$  | $1928 \pm 2$               | 6             |
| $^{110}Pd \rightarrow ^{110}Cd$                    | $2013 \pm 19$              | 12            |
| $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$        | $2040 \pm 1$               | 8             |
| $^{124}Sn \rightarrow ^{124}Te$                    | $2288 \pm 2$               | 6             |
| $^{136}$ Xe $\rightarrow ^{136}$ Ba                | $2479 \pm 8$               | 9             |
| $^{130}\mathrm{Te}  ightarrow ^{130}\mathrm{Xe}$   | $2533 \pm 4$               | 34            |
| $^{116}\mathrm{Cd} \rightarrow ^{116}\mathrm{Sn}$  | $2802 \pm 4$               | 7             |
| $^{82}\text{Se} \rightarrow ^{82}\text{Kr}$        | $2995 \pm 6$               | 9             |
| $^{100}Mo \rightarrow ^{100}Ru$                    | $3034 \pm 6$               | 10            |
| $^{96}\mathrm{Zr}  ightarrow ^{96}\mathrm{Mo}$     | $3350 \pm 3$               | 3             |
| $^{150}\mathrm{Nd} \rightarrow ^{150}\mathrm{Sm}$  | $3667 \pm 2$               | 6             |
| $^{48}Ca \rightarrow ^{48}Ti$                      | $4271 \pm 4$               | 0.2           |

## 35 $\beta\beta$ emetteurs





# **Observables expérimentales**







Masse effective en fonction des oscillations de neutrino

$$\langle m_{\nu} \rangle = c_{\odot}^2 c_R^2 m_{\nu_1}$$

$$+ s_{\odot}^2 c_R^2 e^{i\alpha} \sqrt{m_{\nu_1}^2 + \Delta m_{\odot}^2}$$

$$+ s_R^2 e^{i\beta} \sqrt{m_{\nu_1}^2 + \Delta m_{\odot}^2 + \Delta m_{Atm}^2}$$

Normal  
hierarchy: 
$$\langle m_{\nu} \rangle \simeq s_{12}^2 \sqrt{\Delta m_{\odot}^2} \simeq 3 \times 10^{-3} \text{ eV}$$

Inverse  
hierarchy: 
$$\langle m_{\nu} \rangle \simeq \sqrt{\Delta m_{Atm}^2} \simeq 5 \times 10^{-2} \text{ eV}$$

Mesure masse du neutrino

Ecole de gif septembre 2011



$$< m_{v} > = \left| \sum_{i} U_{ei} m_{i} \right| = \left| \cos^{2} \theta_{13} \left( m_{1} \cos^{2} \theta_{12} + m_{2} e^{2ia} \sin^{2} \theta_{12} \right) + m_{3} e^{2i\beta} \sin^{2} \theta_{13} \right|$$



Feruglio F. , Strumia Air Vissani 5, hep-ph/0201291



 $T_{1/2}^{-1} = F(Q_{\beta\beta}^{5},Z) |M|^{2} < m_{v} > 2$ 

### Les critères possibles:

- Espace de phase (bruit de fond)
- La possibilité d'enrichissement
- Element de matrice nucléaire
- Technique experimentale

|                                      | (MeV) | isotopique |
|--------------------------------------|-------|------------|
| <sup>48</sup> Ca→ <sup>48</sup> Ti   | 4.271 | 0.187      |
| <sup>76</sup> Ge→ <sup>76</sup> Se   | 2.040 | 7.8        |
| <sup>82</sup> Se→ <sup>82</sup> Kr   | 2.995 | 9.2        |
| <sup>96</sup> Zr→ <sup>96</sup> Mo   | 3.350 | 2.8        |
| <sup>100</sup> Mo→ <sup>100</sup> Ru | 3.034 | 9.6        |
| <sup>110</sup> Pd→ <sup>110</sup> Cd | 2.013 | 11.8       |
| <sup>116</sup> Cd→ <sup>116</sup> Sn | 2.802 | 7.5        |
| <sup>124</sup> Sn→ <sup>124</sup> Te | 2,228 | 5.64       |
| <sup>130</sup> Te→ <sup>130</sup> Xe | 2.533 | 34.5       |
| <sup>136</sup> Xe→ <sup>136</sup> Ba | 2.479 | 8.9        |
| <sup>150</sup> Nd→ <sup>150</sup> Sm | 3.367 | 5.6        |

0.0

**Les éléments de matrice nucléaire** 

# Nuclear matrix elements

Nuclear Matrix Elements Shell model ORPA ..

Experimentalists:
What are the best 0vββ-decay candidates?
Particle physicists:
Wat is the absolute v mass scale?
Will the evidence of the 0vββ-decay allow to to conclude about Majorana CP-phases?

### It is a complex task

Medium and heavy open shell nuclei with a complicated nuclear structure
 The construction of complete set of the states of the intermediate nucleus is needed
 Many-body problem ⇒ approximations needed
 Nuclear structure input has to be fixed

F. Simkovic



 $\beta\beta(2\nu)$ 

ββ(0 ν)



LES NME ne sont pas les mêmes, contribution des tous les états intermédiaires pour  $\beta\beta(0v)$ 

#### Modèle en couche ou QRPA

Mesure masse du neutrino



# Uncertainties






Les éléments de matrice nucléaire

| lsotope           | Q     | Nat. abund.              | $G_{0\nu} (\tilde{G}_{0\nu}^{76})$ | $M_{0\nu}{}^{a}$ | $T_{1/2,2\nu,exp}$ |
|-------------------|-------|--------------------------|------------------------------------|------------------|--------------------|
|                   | [keV] | (enr.) [%]               | $[10^{-14} (y^{-1})]^a$            |                  | $[10^{19} (y)]$    |
| <sup>48</sup> Ca  | 4270  | 0.187 (73 <sup>b</sup> ) | 6.35 (16.1)                        | 0.85 - 2.37      | 4.4 <sup>e</sup>   |
| <sup>76</sup> Ge  | 2039  | 7.83 (86°)               | 0.623 (1)                          | 2.81 - 7.24      | 155 <sup>f</sup>   |
| <sup>82</sup> Se  | 2995  | 8.73 (97 <sup>b</sup> )  | 2.70 (4)                           | 2.64 - 6.46      | 9.6 <sup>e</sup>   |
| <sup>96</sup> Zr  | 3350  | 2.8 (57 <sup>b</sup> )   | 5.63 (7.1)                         | 1.56 - 5.65      | 2.35°              |
| <sup>100</sup> Mo | 3034  | 9.63 (99 <sup>b</sup> )  | 4.36 (5.3)                         | 3.103 - 7.77     | 0.716 <sup>e</sup> |
| <sup>116</sup> Cd | 2802  | 7.49 (93 <sup>b</sup> )  | 4.62 (4.8)                         | 2.51 - 4.72      | 2.88 <sup>e</sup>  |
| <sup>130</sup> Te | 2527  | 34.08 (90 <sup>b</sup> ) | 4.09 (3.8)                         | 2.65 - 5.50      | 70 <sup>e</sup>    |
| <sup>136</sup> Xe | 2480  | 8.857 (80 <sup>d</sup> ) | 4.31 (3.9)                         | 1.71 - 4.2       | 211 <sup>g</sup>   |
| <sup>150</sup> Nd | 3367  | 5.6 (91 <sup>b</sup> )   | 19.2 (15.6)                        | 1.71 - 3.7       | 0.91 <sup>e</sup>  |

Q: below 2.6 <sup>208</sup>Tl  $\gamma$ -line, below 3.2 <sup>214</sup>Bi Q-value  $\tilde{G}_{0\nu}^{76} = (G_{0\nu}/A)$  then normalized to the value for <sup>76</sup>Ge  $M_{0\nu}$ : small theor. value or difficult to compute...

<sup>a</sup> from PRD 83, 113010 (2011)

 $^{b}$  achieved in NEMO-3,  $^{c}$  achieved in HM,  $^{d}$  achieved in EXO-200

<sup>e</sup> from NEMO3 (see TAUP 2011), <sup>f</sup> from HM, <sup>g</sup> from EXO-200 (arXiv-1108.4193)











#### With background:

$$T_{1/2}^{0\nu}(y) > \frac{\ln 2 \cdot \mathcal{N}}{k_{C.L.}} \cdot \frac{\varepsilon}{A} \cdot \sqrt{\frac{M \cdot t}{N_{Bckg}} \cdot \Delta E}$$

# $\begin{array}{ll} \textbf{M}: \text{masse (g)} & \textbf{K}_{\text{c.l.}}: \text{Confidence level} \\ \textbf{\epsilon}: \text{efficiency} & \boldsymbol{\mathscr{H}}: \text{Avogadro number} \\ \textbf{t}: \text{time (y)} & \textbf{N}_{\text{Bckg}}: \text{Background events (keV^{-1}.g^{-1}.y^{-1})} \\ \boldsymbol{\Delta}\textbf{E}: \text{ energy resolution (keV)} \end{array}$

#### No background:

$$T_{1/2}^{0\nu}(y) \propto \frac{-\epsilon}{A} M \cdot t$$

#### Today, no technique able to optimize all the parameters



Mesure masse du neutrino

Ecole de gif septembre 2011



## High energy resolution Modest background rejection



## High background rejection Modest energy resolution





 $|\langle m_{\nu} \rangle| = |\sum U_{e_i}^2 m_i| = |\cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13}|$ 



#### Next step ~ 100 kg experiment 2011 - 2015

Ecole de gif septembre 2011

# Les expériences dans le monde







### **Ge detector: - Very good energy resolution**

- Efficiency
- Compact detector









IGEX



#### Efficiency to reject bad events: 60-80 %

#### HM: 0.06 counts/kg.y.keV IGEX: 0.09 counts/kg.y.keV



HM







#### Statistical effect ?

- Estimation of the background level ?
- Problems for some well-known peaks (214Bi)
- Some unknow lines in the same region

#### Les possibilités

<sup>56</sup>Co produced by cosmic rays (2034 keV photon+ 6 keV X-ray)
<sup>76</sup>Ge(n, γ)<sup>77</sup>Ge (2038 keV photon)
Some unknown line
Inelastic neutron scattering (n,n'γ) on lead
Other suggestions, can be combination of all



Strategies: Ge detectors in liquid nitrogen to remove materials Active shielding and segmentation of detectors to reject gamma-rays







Removal of matter Use of liquid nitrogen or argon for active shielding Segmentation Improvement of Pulse Shape Analysis



Objectif: 0.01 coups/keV/kg/an

mesuré 0.06 coups/keV/kg/an



Ecole de gif septembre 2011



Bolometers of TeO<sub>2</sub> ( $Q_{\beta\beta}$ = 2.528 MeV)



**Running at Gran Sasso since 2003** 

Mesure masse du neutrino

10.4 kg of <sup>130</sup>Te





# Le futur des bolomètres CUORE



750 kg of TeO<sub>2</sub>  $\rightarrow$  203 kg of <sup>130</sup>Te

Array of 988 TeO<sub>2</sub> 5x5x5 cm<sup>3</sup> crystals

Improvement of surface event rejection

Goal :N<sub>bckg</sub>=0.01 cts.keV<sup>-1</sup>.kg<sup>-1</sup>.yr<sup>-1</sup> (Factor 20 compared to Cuoricino)

Data taking foreseen in 2014







#### Fréjus Underground Laboratory : 4800 m.w.e.

**Source:** 10 kg of  $\beta\beta$  isotopes cylindrical, S = 20 m<sup>2</sup>, 60 mg/cm<sup>2</sup>

### **Tracking detector:**

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H<sub>2</sub>O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood

**Background:** natural radioactivity mainly <sup>214</sup>Ri et <sup>208</sup>T1 ( $\gamma$  2.6 MeV) **Able to identify e<sup>-</sup>, e<sup>+</sup>, \gamma and \alpha** 









#### **Cathodic ring**

#### **Tube for calibration**





Ecole de gif septembre Allosources produced by centrifugation in Russia 57





 Criteria to select ββ events:
 • 2 tracks with charge < 0</td>
 • Internal hypothesis TOF (external event rejection)

 • 2 pMTs, each > 200 keV
 • No other isolated PMT (γ rejection)

 • Mesure masse du neutrino
 • PMT-Track association
 • No delayed α track (<sup>214</sup>Bi rejection)

 • Common vertex
 • Common vertex



**ßß** event



Tracking detector: drift chambers (6180 Geiger cells)  $\sigma_t = 5 \text{ mm}, \sigma_z = 1 \text{ cm} (\text{ vertex })$ 

**Calorimeter (1940 plastic scintillators and PMTs)** Energy Resolution FWHM=8 % (3 MeV)

Identification  $e^{-}, e^{+}, \gamma, \alpha$ Very high efficiency for background rejection

Background level @  $Q_{\beta\beta}$  [2.8 – 3.2 MeV] : 1.2 10<sup>-3</sup> cts/keV/y

**Running at Modane underground laboratory (2003 - 2011)** 







## **NEMO** backgrounds

•Natural radioactivity outside and inside source foils: • <sup>238</sup>U / <sup>232</sup>Th chains

- <sup>40</sup>K
- Rn

cosmic μneutrons



Background measurement in NEMO-3: NIM A606 (2009) 449



### NEMO 3 measures each component of its background

External background: ey-external and e-crossing events



#### Internal <sup>214</sup>Bi : $e\alpha(\gamma)$ -events from foil



# NEMO 3: ββ2ν results for <sup>100</sup>Mo source

Phase 2:4 years of data



700 000 two-electron events from <sup>100</sup>Mo source foils

**Ratio Signal/Background : 76** 

 $T_{1/2}$  (ββ2ν) = (7.16 ± 0.01) 10<sup>18</sup> y (preliminary)

Mesure masse du neutri (published phase 1 Ecdig/degi = 36 [3eptemb 0.921 (stat) ± 0.54 (sys) ] 10<sup>18</sup> y )





**NEMO 3:** ββ(0v) search results (4.5 y of data)



Limit set by Modified Frequentist Method (CLs) using full distribution shape

QRPA M.Kortelainen and J.Suñonen, Phys.Rev. C 75 (2007) 051303(R)
 QRPA M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315

[3] QRPA F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503 [4] IBM2 J.Barrea and F.Iachello Phys.Rev.C 79(2009)044301

**PHFB** [5] P.K. Rath et al., Phys. Rev. C 82 (2010) 064310

SM [6] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503



## **Majorons and V+A currents**



Majoron emission would distort the shape of the energy sum spectrum

$$(A, Z) \to (A, Z+2) + 2e^{-} + \chi^{0}(\chi^{0})$$

|    | V+A *                                                   | n=1 **                                                                        | n=2 **                | n=3 **                        | n=7 **              |
|----|---------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|-------------------------------|---------------------|
| Мо | > <b>5.7·10</b> <sup>23</sup><br>λ<1.4·10 <sup>-6</sup> | > <b>2.7·10<sup>22</sup></b><br>G <sub>ee</sub> <(0.4 - 1.8)·10 <sup>-4</sup> | >1.7·10 <sup>22</sup> | >1.0·10 <sup>22</sup>         | >7·10 <sup>19</sup> |
| Se | > <b>2.4·10</b> <sup>23</sup><br>λ<2.0·10 <sup>-6</sup> | > <b>1.5·10<sup>22</sup></b><br>G <sub>ee</sub> <(0.7- 1.9)·10 <sup>-4</sup>  | >6·10 <sup>21</sup>   | > <b>3.1·10</b> <sup>21</sup> | >5·10 <sup>20</sup> |

n: spectral index, limits on half-life in years

\* Phase I+Phase II data

\*\* Phase I data, *R.Arnold et al. Nucl. Phys. A765 (2006) 483* 





$$\mathsf{T}_{1/2}(\beta\beta0\nu) > \ln 2 \times \frac{\mathsf{N}_{\mathsf{A}}}{\mathsf{A}} \times \frac{\mathsf{M} \times \varepsilon \times \mathsf{T}_{\mathsf{obs}}}{\mathsf{N}_{90}}$$

| NEMO-3                                                                                     |                                                                                          | <b>SuperNEMO</b>                                                                           |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <sup>100</sup> Mo                                                                          | isotope                                                                                  | <sup>82</sup> Se (baseline) or 150Nd or <sup>48</sup> Ca                                   |
| <b>7</b> kg                                                                                | isotope mass M                                                                           | 100-200 kg                                                                                 |
| 8 %                                                                                        | efficiency ε                                                                             | ~ 30 %                                                                                     |
| <sup>208</sup> TI: < 20 μBq/kg<br><sup>214</sup> Bi: < 300 μBq/kg                          | internal contaminations $^{208}\text{Tl}$ and $^{214}\text{Bi}$ in the $\beta\beta$ foil | <sup>208</sup> Tl < 2 μBq/kg<br><i>if <sup>82</sup>Se</i> : <sup>214</sup> Bi < 10 μBq/kg  |
| 8% @ 3MeV                                                                                  | energy resolution (FWHM)                                                                 | 4% @ 3 MeV                                                                                 |
| T <sub>1/2</sub> (ββ0v) > 2 x 10 <sup>24</sup> y<br><m<sub>v&gt; &lt; 0.3 – 1.3 eV</m<sub> |                                                                                          | T <sub>1/2</sub> (ββ0ν) > 1 x 10 <sup>26</sup> y<br><m<sub>v&gt; &lt; 40 - 100 meV</m<sub> |







## A module





|                                  | Demonstrator<br>module                    | 20 Modules            |
|----------------------------------|-------------------------------------------|-----------------------|
| Source : <sup>82</sup> Se        | 7 kg                                      | 100 kg                |
| Drift chambers for tracking      | 2 0000                                    | 40 000                |
| Electron calorimeter             | 500                                       | 10 000                |
| γ veto (up and down)             | 100                                       | 2 000                 |
| T <sub>1/2</sub> sensitivity     | 6.6 10 <sup>24</sup> y<br>(No background) | 1. 10 <sup>26</sup> y |
| <m<sub>v&gt; sensitivity</m<sub> | 200 – 400 meV                             | 40 – 100 meV          |

Mesure masse du neutrine Demonstrator module (7 kg) under construction supernemo

## collaboration

# **SuperNEMO demonstrator module**







#### The main goals of the demonstrator module are

- demonstration of the feasibility of a full scale detector with the requested performances (e.g. calorimeter energy and time resolution, tracker efficiency and radio-purity).
- measurement of the radon background contribution especially from internal materials outgasing.
- measurement of the background contribution from the detector components.
- finalize/optimize the design of the full scale detector.
- production of a competitive measurement with <sup>82</sup>Se (2.5 years of data taking with a 7 kg source). After 17 kg.yr exposure with <sup>82</sup>Se, the sensitivity of the demonstrator will be 6.6  $10^{24}$  y (90% CL) which is equivalent to 3  $10^{25}$  y obtained with <sup>76</sup>Ge. This will lead to a neutrino mass sensitivity similar to GERDA Phase-I :  $< m_{\nu} > \simeq 200$ -400 meV.

Mesure masse du neutrino ted start of data taking: 2014/T2 for 3 years



## **SuperNEMO : BiPo detector**





in U and Th chains

#### BiPo sensitivity $(3.24 \text{ m}^2)$ • Surface background measurement : • $A(^{208}TI)_{BiPo1} \sim 1.5 \ \mu Bq/m^2$ (258 days.m<sup>2</sup> @ LSM) ▶ $0.6 < A(^{214}Bi)_{BiPo3} < 23.0 \ \mu Bq/m^2$ (5.34 days.m<sup>2</sup> @ LSC) • BiPo-3 sensitivity for SuperNEMO <sup>82</sup>Se sources : • $A(^{208}TI) < 2 \ \mu Bq/kg$ in 6 months A(<sup>214</sup>Bi) < 10 $\mu$ Bq/kg in 6 month

#### Installation of BiPo 3 in LS Canfranc

Mesure masse du neutrino

Ecole de gif septembre 2011

BiPo 3

α i 36 %

(stable)

supernemo



## **SuperNEMO : Calorimeter**





Volume: 8 l (NEMO3 4 l) 8" PMT (NEMO3 5" PMT) ΔE/E 6.5 – 8 % Mesure masse du neutrino Factor 2 less compared to NEMO3



## Calorimeter

Required resolution demonstrated with cubic PVT ( $256 \times 256 \text{ mm}^2$  entrance surface,  $\geq 12$ cm thick) directly coupled to a 8" PMT (R5912MOD)

FWHM = 7.3% @ 1MeV Ecole de gif septembre 2011 FWHM = 4.2% @ 3MeV



collaboratio

# **SuperNEMO : Tracker**



### Tracker

- Basic 90 cells prototype developed
  - ⊳ ø = 44 mm
  - ▶ L = 3.7 m
- Required performances demonstrated using cosmic muon data

 $\sigma_T \sim 0.7 \text{ mm}$   $\sigma_L \sim 1 \text{ cm}$  $\epsilon_{Geiger} > 98\%$ 







Ecole de gif septembre 2011 90 cells prototype : data with cosmic rays





# Liquid Xe TPC

Energy measurement by ionization + scintillation Tagging of Baryum ion ( $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-}$ )

Large mass of Xe Identification of final state  $\rightarrow$  background rejection

But no e<sup>-</sup> identification Poor background rejection without Ba ion tagging

**R&D** for Ba ion tagging in progress



#### Prototype EXO-200 200 kg of <sup>136</sup>Xe, no Ba ion tagging Installation in WIPP underground lab 2007

EXO 200 (2 years)  $T_{\gamma_2} > 6.4 \ 10^{25} \text{ yr}$  (90% CL)  $< m_{\gamma} > < 0.27 - 0.38 \text{ eV}$


• 31 live-days of data

**EXO** 

- 63 kg active mass
- Signal / Background ratio 10:1

-as good as 40:1 for some extreme fiducial volume cuts

 $T_{1/2} = 2.11 \cdot 10^{21} \text{ yr} (\pm 0.04 \text{ stat}) \text{ yr} (\pm 0.21 \text{ sys}) [arXiv:1108.4193]$ 



Mais fond pour  $\beta\beta(0\nu)$ 15 fois plus grand qu'attendu Avec volume fiduciel 1/3









#### **SNO++** Nd salt + liquid scintillator



#### **SNOLAB** laboratory

2010: 740 kg of <sup>nat</sup>Nd (44 kg of <sup>150</sup>Nd) **Dissolved** in scintillator

+ Large mass

+ low background detector

### KamLAND-Zen Xe + liq. scintillator



+ Large mass + low background detector

**Kamioka laboratory** 

2011: 400 kg of <sup>136</sup>Xe **Dissolved** in liq. scintillator

### **NEXT** Xe high pressure TPC



**Canfranc laboratory** 

2011: 1 kg of <sup>136</sup>Xe

2013 : 100 kg

#### + Background rejection

Mesure masse du neutrino



| Experiments | Isotopes                             | Techniques                              | Main caracteristics                     |  |  |
|-------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--|--|
| NEMO3       | <sup>100</sup> Mo, <sup>82</sup> Se  | Tracking + calorimeter                  | Bckg rejection, isotope choice          |  |  |
| SuperNEMO   | <sup>82</sup> Se, <sup>150</sup> Nd  | Tracking + calorimeter                  | Bckg rejection, isotope choice          |  |  |
| Cuoricino   | <sup>130</sup> Te                    | Bolometers                              | Energy resolution, efficiency           |  |  |
| CUORE       | <sup>130</sup> Te                    | Bolometers                              | Energy resolution, efficiency           |  |  |
| GERDA       | <sup>76</sup> Ge                     | Ge diodes                               | Energy resolution, eficiency            |  |  |
| Majorana    | <sup>76</sup> Ge                     | Ge diodes                               | Energy resolution, efficiency           |  |  |
| COBRA       | <sup>130</sup> Te, <sup>116</sup> Cd | ZnCdTe semi-conductors                  | Energy resolution, efficiency           |  |  |
| EXO         | <sup>136</sup> Xe                    | <b>TPC</b> ionisation + scintillation   | Mass, efficiency, final state signature |  |  |
| MOON        | <sup>100</sup> Mo                    | Tracking + calorimeter                  | Compactness, Bckg rejection             |  |  |
| CANDLES     | <sup>48</sup> Ca                     | CaF <sub>2</sub> scintillating crystals | Efficiency, Background                  |  |  |
| SNO++       | <sup>150</sup> Nd                    | Nd loaded liquid scintillator           | Mass, efficiency                        |  |  |
| XMASS       | <sup>136</sup> Xe                    | Liquid Xe                               | Mass, efficiency                        |  |  |
| CARVEL      | <sup>48</sup> Ca                     | CaWO4 scintillating crystals            | Mass, efficiency                        |  |  |
| Yangyang    | <sup>124</sup> Sn                    | Sn loaded liquid scintillator           | Mass, efficiency                        |  |  |
| DCBA        | <sup>150</sup> Nd                    | Gazeous TPC                             | Bckg rejection, efficiency              |  |  |
| LUCIFER     | <sup>82</sup> Se, <sup>100</sup> Mo  | Scintillating bolometers                | Bckg rejection, efficiency, resolution  |  |  |

Mesure masse du neutrino

Ecole de gif septembre 2011

of the standard local Charter of the st

Où en est-on pour les bruits de fond ?

- <sup>130</sup>Te [MEDEX'11] :
  - Cuoricino :  $B \simeq 0.18$  counts/keV/y/kg
  - CUORE R&D :  $B \simeq 0.05$ -0.10 counts/keV/y/kg
  - CUORE target :  $B \simeq 0.01$  counts/keV/y/kg
- <sup>76</sup>Ge [Moriond'11] :
  - HM :  $B \simeq 0.06$  counts/keV/y/kg (PSA)
  - GERDA R&D :  $B \simeq 0.05$  counts/keV/y/kg
  - GERDA I (II) target :  $B \simeq 0.01$  (0.001) counts/keV/y/kg
- <sup>136</sup>Xe [arXiv :1108.4193] :
  - EXO-200 :  $B \gtrsim 0.02$  counts/keV/y/kg
  - EXO-200 target :  $B \gtrsim 0.001$  counts/keV/y/kg



| Experiment  | lsotope           | Mass [kg]        | $\Delta E/E$ | В             | n <sup>ROI</sup><br>n <sub>bkgd</sub> |
|-------------|-------------------|------------------|--------------|---------------|---------------------------------------|
|             |                   |                  | @ Q[%]       | [/keV/kg/y]   | (5y)                                  |
| CUORE       | <sup>130</sup> Te | 200 (1 t)*       | 0.3          | 0.01          | 50                                    |
| GERDA       | <sup>76</sup> Ge  | I. 18            | 0.16         | 0.01          | 3                                     |
|             |                   | II. 40           |              | 0.001         | 0.6                                   |
|             |                   | III. 1000        |              | <0.001        | <15                                   |
| MAJORANA    | <sup>76</sup> Ge  | I. 30-60         | 0.16         | 0.001         | 0.5                                   |
|             |                   | II. 1000         |              | 0.00025       | 3                                     |
| EXO         | <sup>136</sup> Xe | I. 200           | 3.8          | 0.001         | 100                                   |
|             |                   | II. 1000         |              | $2 \ 10^{-6}$ | 1                                     |
| SuperNEMO   | <sup>82</sup> Se  | I. 7             | 4-5          | 2 10-5        | 0                                     |
|             |                   | II. 100          |              |               | 1-2                                   |
| KamLAND-ZEN | <sup>136</sup> Xe | I. 400 (16 t)*   | 10           | $10^{-6}$     | 20                                    |
|             |                   | II. 1000 (40 t)* |              |               | 50                                    |
| SNO+        | <sup>150</sup> Nd | I. 56 (1000 t)*  | 6.4          | $10^{-6}$     | 800                                   |



|            | Technique                                          | Location             | Mass<br>kg                 | start       | <b>Bckg</b><br>Cts/keV/kg/yr | T <sub>1/2</sub> (0∨)<br>5 yr                | <m<sub>ee&gt;<br/>meV</m<sub> |
|------------|----------------------------------------------------|----------------------|----------------------------|-------------|------------------------------|----------------------------------------------|-------------------------------|
| EXO        | Liquid Xe<br><sup>136</sup> Xe                     | WIPP<br>(USA)        | 200                        | 2010        | 0.002                        | 6.4 10 <sup>25</sup>                         | < 109 - 135                   |
| GERDA      | Diode Ge<br><sup>76</sup> Ge                       | Gan sasso<br>(Italy) | 18                         | 2010        | 0.01                         | <b>3. 10</b> <sup>25</sup>                   | < 250– 380                    |
|            |                                                    |                      | 40                         | 2012        | 0.001                        | <b>3.</b> 10 <sup>26</sup>                   | < 80 - 120                    |
| CUORE-0    | Delementerre                                       |                      | 13                         | 2011        | 0.12                         | 8. 10 <sup>25</sup>                          | <100 - 200                    |
| CUORE      | <sup>130</sup> Te                                  | Gan sasso<br>(Italy) | 200                        | 2013        | 0.01<br>0.001                | 2.1 10 <sup>26</sup><br>6.5 10 <sup>26</sup> | < 41 -82<br>< 23- 47          |
| SN module0 | Tracko-calo<br><sup>82</sup> Se, <sup>150</sup> Nd | Modane<br>(France)   | 7                          | 2013        | 0.0001                       | 6. 10 <sup>24</sup>                          | < 200 –600                    |
| SuperNEMO  |                                                    |                      | 100                        | 2015        | 0.0001                       | <b>10</b> <sup>26</sup>                      | < 53 – 145                    |
| SNO+       | Liq. Scint.<br><sup>150</sup> Nd                   | SNOLAB<br>(Canada)   | 44                         | 2012        |                              |                                              | < 100                         |
| KamLAND    | Liq. Scinti<br><sup>136</sup> Xe                   | Kamioka<br>(Japan)   | <b>400</b><br>Ecole de gif | <b>2011</b> | 011                          |                                              | < 60 (2 yr)                   |

#### La mesure de la masse du neutrino est un long chemin

Mais un gros progrès : jusqu'en 1998 on n'était pas que le neutrino soit massif....

Mesure directe: cosmologie semble s'approcher du but mais modèle dépendant

Simple beta: KATRIN devrait atteindre d'ici 2017 -2018  $m_v < 0,2 eV$ MARE et d'autre développements pourrait permettre d'aller plus loin

**Double beta** : - La masse du neutrino est un des aspects de la physique avec la  $\beta\beta(0v)$ 

- La prochaine génération cherche à atteindre 50 100 meV
- Toutes les techniques extrapolable à 100 kg sont dans le bruit de fond
- De nouvelles R&D (bolomètres scintillants, semi-conducteur)
- Progrès lents (avec du bruit de fond  $m_v \sim M^{-4}$ )
- Parler de la tonne n'a pas de sens aujourd'hui (enrichissement, fond, technique)

# **Double désintégration bêta**

CONTRACTOR AND AND AN ADVANCED AND ADDRESS OF THE OFFICE

# **Double désintégration bêta**

CONTRACTOR AND AND AN ADVANCED AND ADDRESS OF THE OFFICE





Laurent Saihara, TAUP 2011

### **Neutrino mass**

#### Absolute mass ?

Beta decay  $m_v = \Sigma |U_{ei}| m \left[ -2.3 e^2 V^2 \right]^{1/2}$ 

Double beta decay  $|< m_v>| = |\Sigma U_{ei} m_i| < 0.2 - 20.8 \text{ eV}$ 

Cosmology

 $\Sigma m_{i} = m_{1} + m_{2} + m_{3} < 1 \text{ eV}$ 

![](_page_83_Figure_6.jpeg)

F. Piquemal (CENBG) LP07 Daegu August 2007

### **Beta decay**

![](_page_84_Picture_1.jpeg)

(A,Z)  $\rightarrow$  (A,Z+1) + e<sup>-</sup> +  $v_e$ 

dN/dE ~ [  $(E_0 - E_e)^2 - m_{vi}^2$  ]<sup>1/2</sup>:  $m_v^2 = \sum |U_{e_i}|^2 m_i^2$ 

![](_page_84_Figure_4.jpeg)

High counting rate Low background Energy resolution <sup>2011</sup>m.

Mesure masse du neutrino F. Piquemal (CENBG) LP07 Daegu August 2007 85

### Beta decay: present status

**MAC-E** spectrometers

![](_page_85_Figure_2.jpeg)

## Beta decay: KATRIN experiment

![](_page_86_Figure_1.jpeg)

Mesure masse du neutrino

Ecole de gif septembre 2011

# Nuclear matrix elements

![](_page_87_Picture_1.jpeg)

**Experimentalists:** 

• What are the best 0νββ–decay candidates? Particle physicists:

• Wat is the absolute v mass scale?

• Will the evidence of the 0νββ-decay allow to to conclude about Majorana CP-phases?

### It is a complex task

➢ Medium and heavy open shell nuclei with a complicated nuclear structure
 ➢ The construction of complete set of the states of the intermediate nucleus is needed
 ➢ Many-body problem ⇒ approximations needed
 ➢ Nuclear structure input has to be fixed

Mesure masse du neutrino

# Uncertainties

F. Simkovic

List of reasons, why QRPA-like 0νββ–decay NME are different (13 reasons)

**Quasiparticle mean field** fixing of pp,nn (pn) pairing

Many-body approximations QRPA, RQRPA, SRQRPA

**Choice of NN interaction** Schem., realistic (Bonn, Paris ...

the closure approximation p-h interaction (g<sub>ph</sub>≅ 1) fixed to GT resonance

The size of model space

p-p interaction ( $g_{pp}$ ) fixed to β or ββ–decay resonance, or  $g_{pp}=1$  two-nucleon s.r.c. (~ 50%) has to be considered

finite size of nucleon (~10%) form factors

h.o.t. of nucleon curr. (~30%) Induced PS, weak magnetism

> the overlap factor the BCS overlap

the axial-vector coupling g<sub>A</sub>=1.0 or 1.25

Nuclear shape Spherical, not deformed yet

Mesure masse du neutrino

Ecole de gif septembre 2011

### How to calculate Nuclear Matrix Elements ?

![](_page_89_Figure_1.jpeg)

NME are not the same, higher multipole contribute for  $\beta\beta(0\nu)$ 

#### **Shell Model Calculation or QRPA**

Ecole de gif septembre 2011

#### QRPA vs Shell Model

![](_page_90_Figure_1.jpeg)

### Heidelberg – Moscou and IGEX experiment

![](_page_91_Picture_1.jpeg)

**Ge detector: - Very good energy resolution** 

- Efficiency

- Compact detector

![](_page_92_Figure_0.jpeg)

# Pulse shape analysis

![](_page_93_Figure_1.jpeg)

![](_page_93_Figure_2.jpeg)

#### Efficiency to reject bad events: 60-80 %

HM: 0.06 counts/kg.y.keV IGEX: 0.09 counts/kg.y.keV

![](_page_93_Figure_5.jpeg)

Ecole de gif septembre 2011

HM

# $\beta\beta(0v)$ signal ? HM claim

#### **2002 (3.1** $\sigma$ )

![](_page_94_Figure_2.jpeg)

![](_page_95_Picture_0.jpeg)

Statistical effect

Estimation of the background level

Problems for some well-known peaks (214Bi)

Some unknow lines in the same region

<sup>56</sup>Co produced by cosmic rays (2034 keV photon+ 6 keV X-ray)
<sup>76</sup>Ge(n, γ)<sup>77</sup>Ge (2038 keV photon)
Some unknown line
Inelastic neutron scattering (n,n'γ) on lead
Other suggestions, can be combination of all

Mesure masse du neutrino

# **GE futur**

#### MAJORANA (USA, Russia)

![](_page_96_Picture_2.jpeg)

**Objective: 500 kg of <sup>76</sup>Ge 210 enriched segmented detectors** 

> Detector segmentation PSD improvement Material selection

Feasability of segmented detector checked

In progress tests of 16 détectors of natural Ge + 2 enriched

#### ~10 ans to have full detector

2015 ?:  $T_{1/2} > 4.10^{27} \text{ y} < m_{o} > 0.02 - 0.03 \text{ eV}$ 

Mesure masse du neutrino

#### **GERDA** (Europe, Russia)

![](_page_96_Picture_9.jpeg)

**Objective: 100 kg of <sup>76</sup>Ge Suppression of matter** 

Ge placed in liquid nitrogen or argon (active veto to reject background) PSD improvement

Feasability of Ge in liquid N<sub>2</sub> shown 2008: cristaux HM+IGEX to test HM signal Si bdf=0.01 cps.kev<sup>-1</sup>.kg<sup>-1</sup>.an<sup>-1</sup> HM rejeté à 99.6% en 1 an 2010: 100 kg (détecteurs segmentés)

Ecole de gif septembre 2011  $2015: T_{1/2} > 2.10^{26} \text{ ans } < m_v > 0.09 - 0.29^{97} \text{eV}$ 

## **Bolometer: cuorecino - cuore**

![](_page_97_Figure_1.jpeg)

![](_page_97_Picture_2.jpeg)

example: 750 g of TeO<sub>2</sub> @ 10 mK  $C \sim T^3$  (Debye)  $\Rightarrow C \sim 2 \times 10^{-9}$  J/K 1 MeV  $\gamma$ -ray  $\Rightarrow \Delta T \sim 80 \mu K$ Ecole de gif septembre 2011  $\Rightarrow \Delta U \sim 10 \text{ eV}$ 

Mesure masse du neutrino

## **Cuoricino spectrum**

![](_page_98_Figure_1.jpeg)

# **Cuoricino results**

Bolometers of TeO2 ( $Q_{\beta\beta}$ = 2,528 MeV) Natural abundance <sup>130</sup>Te 30% Resolution (FWHM at 1 MeV) 5-7 keV

**CUORICINO: 1 tower de CUORE** 

42 modules of 5\*5\*5 cm3 18 modules of 2\*3\*6 cm3

10.4 kg of <sup>130</sup>Te

Efficaciency: 86 %

Run since 2003

Bckg: 0.17 evt.keV<sup>-1</sup>.kg<sup>-1</sup>.y<sup>-1</sup> <sup>208</sup>Tl in materials, surface contamination in α et β emitters Italy, Spain, Netherland, USA

![](_page_99_Picture_9.jpeg)

![](_page_99_Figure_10.jpeg)

![](_page_99_Figure_11.jpeg)

In  $a_{12} = T_{1/2} + T_$ 

## **CUORE**

![](_page_100_Figure_1.jpeg)

750 kg TeO<sub>2</sub>  $\rightarrow$  203 kg <sup>130</sup>Te 19 towers x 13 modules x 4 detectors

R&D for CUORE

 $0.17 \rightarrow 0.01$  cps.keV<sup>-1</sup>.kg<sup>-1</sup>.an<sup>-1</sup>

![](_page_100_Figure_5.jpeg)

Sensitivities for 5 years $N_{bdf}$ =0.01 cps.keV<sup>-1</sup>.kg<sup>-1</sup>.y<sup>-1</sup> $N_{bdf}$ =0.001 cps.keV<sup>-1</sup>.kg<sup>-1</sup>.y<sup>-1</sup> $T_{\frac{1}{2}} > 2.1 \ 10^{26} \ y$  $T_{\frac{1}{2}} > 6.6 \ 10^{26} \ y$  $< m_{v} > < 0.03 - 0.17 \ eV$  $< m_{v} > < 0.015 - 0.1 \ eV$ 

Mesure masse du neuffunded experiment, Start, 2010, Results 2015

![](_page_101_Picture_0.jpeg)

![](_page_101_Picture_1.jpeg)

#### SNO + SNO filled with liquid scintillator for solar neutrino detection

Mesure masse du neutrino

Ecole de gif septembre 2011

### SNO++

![](_page_102_Figure_1.jpeg)

maximum likelihood statistical test of the shape to extract  $O_{Me}$  and  $2N_{M}$  components...~240 units of  $A_{X}^{2}$  significance after only 1 yearls