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What will you learn from these lectures?

● The basic picture of neutrino oscillations (mixing of 
states and coherence)

● The formal details: how to derive the probabilities

● Neutrino oscillations both in vacuum and in matter

● The implications of neutrino oscillations:
neutrino masses and mixing

● Their relevance in present and future experiments



● C. Giunti, C. W. Kim, Fundamentals of Neutrino Physics and 
Astrophysics, Oxford University Press, USA (May 17, 2007)

● C.W. Kim and A. Pevsner, Neutrinos in Physics and 
Atrophysics, Harwood academic publishers (1993)

● A. De Gouvea,TASI lectures, hep-ph/0411274

● S.M. Bilenky and S. T. Petcov, Rev. Mod. Phys. 59 (1987) 671

● S.M. Bilenky et al., Phys. Rept. 379 (2003) 69 [hep-ph/0211462]

● A. Strumia and F.  Vissani, hep-ph/0606054.

Useful references



Plan of lecture 1

● Brief history of neutrino oscillations

● Neutrino mixing

● Neutrino oscillations: the basic picture

● Neutrino oscillations: the details

● 2-neutrino oscillations

● 3-neutrino oscillations

● Subtle issues in neutrino oscillations



History of neutrino oscillations

● The first idea of neutrino oscillations 
was considered by B. Pontecorvo in 1957. 
[B. Pontecorvo, J. Exp. Theor. Phys. 33 (1957)549. 
B. Pontecorvo, J. Exp. Theor. Phys. 34 (1958) 247.]

● Mixing was introduced at the beginning 
of the ‘60 by Z. Maki, M. Nakagawa, S. Sakata, 
Prog. Theor. Phys. 28 (1962) 870, Y. Katayama, K. Matumoto, S. 
Tanaka, E. Yamada, Prog. Theor. Phys. 28 (1962) 675 and  M. 
Nakagawa, et. al., Prog. Theor. Phys. 30 (1963)727. 

● Few years later the first computation of the 
probability was performed [V. Gribov, B. Pontecorvo, Phys. 
Lett. B28 (1969) 493. See also B. Pontecorvo, Sov. Phys. JETP 26 
(1967) 984.].



First indications of ν oscillations came from solar ν. 

● R. Davis built the Homestake 
experiment to detect solar 
ν, based on an experimental 
technique by Pontecorvo.

● Compared with the predicted 
solar neutrinos fluxes (J. Bahcall 
et al.), a significant deficit was found. First results were 
announced [R. Davis, Phys. Rev. Lett. 12 (1964)302 and R. Davis et 
al., Phys. Rev. Lett. 20 (1968) 1205].

● This anomaly received further confirmation by other 
experiments (SAGE, GALLEX, SuperKamiokande, SNO...) 
and was finally interpreted as neutrino oscillaions.



An anomaly was also found in atmospheric neutrinos.

● Atmospheric neutrinos had been observed by various 
experiments but the first relevant indication of an anomaly 
was presented in 1988 [Kamiokande Coll., Phys. Lett. B205 (1988) 
416], subsequently confirmed by MACRO. 

● The anomaly was interpreted as neutrino oscillations.

● Strong evidence was presented in 1998 by 
SuperKamiokande (corroborated by Soudan2 and 
MACRO) [SuperKamiokande Coll., Phys. Rev. Lett. 81 (1998) 1562]. 
This is considered the start of “modern neutrino physics”!



Since 1998, an impressive amount of data has been found 
of oscillations of solar, atmospheric, reactor and 

accelerator neutrinos.

Schwetz et al., 2011,

Schwetz et al., 2011, 
see also Gonzalez-
Garcia and Maltoni

Fogli et al., 2011

The solar sector

The atmospheric sector

Hints of θ13.

SNO

KamLAND
SAGE, GALLEX

Super-Kamiokande

K2K

MINOS

MACRO

CHOOZ

T2K
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Neutrinos in the SM

● Neutrinos come in 
3 flavours, 
corresponding to the 
charged lepton. 

● They belong to SU(2) doublets:

● In the SM, neutrinos do not have mass. But we 
know that this is not the case.



Neutrino interactions

● They have charged current (CC) interactions

This implies that in an interaction in which a muon is 
produced, the corresponding (anti-)neutrino will be a 
muon (anti-)neutrino:                     .

● And neutral current ones.

π− → µ−ν̄µ



Notice that this Lagrangian is invariant under a global 
U(1) transformation for each generation

This is the so called family lepton number,     .

The global lepton number, L is                        .

Lepton number is one of the important symmetries 
of particle interactions: it is related to the nature of 
neutrinos, the origin of neutrino masses and of the 
baryon asymmetry of the Universe.



Neutrino masses

Neutrinos have mass (see Smirnov’s lectures):

For instance, a Majorana mass term

The matrix M typically will be non-diagonal in the 
flavour basis and can be diagonalised by a congruent 

transformation.

Llepton = LSM + neutrino masses

LM
mass =

1
2
νT

L C†MMνL + h.c.

MM = U∗
ν diag(m1, m2, m3) U†

ν



Neutrino mixing

Mixing is described by the Pontecorvo-Maki-
Nakagawa-Sakata matrix, which enters in the CC 
interactions

Note: the diagonalisation of the charged lepton 
Lagrangian can also contribute to U: 

U = Uν U†
"

What we measure in neutrino oscillations is the 
combination U.

|να〉 =
∑

i

Uαi|νi〉

LCC = − g√
2

∑

kα

(U∗
αkν̄kLγρlαLWρ + h.c.)



2-neutrino mixing matrix depends on 1 angle only. 
The phases get absorbed in a redefinition of the 
leptonic fields (a part from 1 Majorana phase). 

(
cos θ − sin θ
sin θ cos θ

)

3-neutrino mixing matrix has 3 angles and 1(+2) CPV 
phases.

Rephasing the kinetic, NC and mass 
terms are not modified:

these phases are unphysical.

e → e−i(ρe+ψ)e

µ → e−i(ρµ+ψ)µ

τ → e−iψτ

CKM-
type

(
ν̄1 ν̄2 ν̄3

)
eiψ




eiφ1 0 0
0 eiφ2 0
0 0 1








. . .
. . .
. . .








eiρe 0 0
0 eiρµ 0
0 0 1








e
µ
τ







For Dirac neutrinos, the same rephasing can be done. 
For Majorana neutrinos, the Majorana condition forbids 

such rephasing: 2 physical CP-violating phases.

For antineutrinos, U → U∗

U =




c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 c23 s23

0 −s23 c23





Solar, reactor θ12 ∼ 30o Atm, Acc θ23 ∼ 45o




1 0 0
0 1 0
0 0 e−iδ








c13 0 s13

0 1 0
−s13 0 c13








1 0 0
0 e−iφ1 0
0 0 e−iφ2





CPV phase React, Acc θ23 < 12o CPV Majorana phases



CP-violation

CP-symmetry is one of the important symmetries in 
particle physics. It is broken in the quark sector. 
Is there CP-violation also in the leptonic one?

UCP ψ(x, t)U−1
CP = ηkiγ0Cψ̄T (−x, t)

Under a CP-transformation

U is real⇒ δ = 0, πCP-conservation requires

ηk

UCP W ρU−1
CP = −W ρ†

UCPLCCU−1
CP = − g√

2

∑

kα

(
Uαkηkiν̄kLγρlαLWρ + U∗

αkη∗kil̄αLγρνkLW †
ρ

)

where     is the neutrino phase and we used

LCC = − g√
2

∑

kα

(
U∗

αkν̄kLγρlαLWρ + Uαk l̄αLγρνkLW †
ρ

)
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Neutrino oscillations: the picture

νµ
X

µ

Production

Flavour 
states

Propagation

Massive states
(eigenstates of the 

Hamiltonian)

Detection

Flavour 
states

At production, coherent superposition of massive states:

|νµ〉 = Uµ1|ν1〉 + Uµ2|ν2〉 + Uµ3|ν3〉



Production Propagation Detection:
projection over|νµ〉 =

∑

i

Uµi|νi〉 ν1 : e−iE1t

ν2 : e−iE2t

ν3 : e−iE3t

〈νµ|

As the propagation phases are different, the state 
evolves with time and can change to other flavours.

νµ
X

µ



Neutrino oscillations are analogous to many other 
systems in QM, in which the initial state is a coherent 
superposition of the eigenstates of the Hamiltonian:

● NH3 molecule: produced in a superposition of “up” and 
“down” states

● Spin states: for example a state with spin up in the z-
direction in a magnetic field aligned in the x-direction 
B=(B,0,0). This gives raise to spin-precession, i.e. the state 
changes the spin orientation with a typical oscillatory 
behaviour.
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Neutrino oscillations: the theory
i) in vacuum

In the same-momentum approximation:

E1 =
√

p2 + m2
1 E2 =

√
p2 + m2

2 E3 =
√

p2 + m2
3

Let’s assume that at t=0 a muon neutrino is produced

|ν, t = 0〉 = |νµ〉 =
∑

i

Uµi|νi〉

The time-evolution is given by the solution of the 
Schroedinger equation with free Hamiltonian:

|ν, t〉 =
∑

i

Uµie
−iEit|νi〉

Note: other derivations are also valid (same E formalism, etc).



At detection one projects over the flavour state as these 
are the states which are involved in the interactions.

 The probability of oscillation is

Typically neutrinos are very relativistic: 

P (νµ → ντ ) = |〈ντ |ν, t〉|2

=

∣∣∣∣∣∣

∑

ij

UµiU
∗
τje

−iEit〈νj |νi〉

∣∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

UµiU
∗
τie

−iEit

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

UµiU
∗
τie

−i
m2

i
2E t

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

UµiU
∗
τie

−i
m2

i−m2
1

2E t

∣∣∣∣∣

2

Ei ! p +
m2

i

2p

∆m2
i1

Exercise



Implications of the existence of neutrino oscillations

P (να → νβ) =

∣∣∣∣∣
∑

i

Uα1U
∗
β1e

−i
∆m2

i1
2E L

∣∣∣∣∣

2
The oscillation probability implies that

● neutrinos have mass (as the different 
components of the initial state need to propagate with 
different phases)

● neutrinos mix (as U needs not be the identity. If 
they do not mix the flavour eigenstates are also 
eigenstates of the Hamiltonian and they do not evolve)

Notation: α and β refer to flavour states; 1,2,3... to massive states. 
Unless specified, α≠β.



General properties of neutrino oscillations

● Conservation of probability:                       

● Neutrino oscillations conserve the total lepton 
number:

a neutrino is produced and evolves with time

● They violate the flavour lepton number as expected 
due to mixing.

● Neutrino oscillations do not depend on the overall 
mass scale and on the Majorana phases.

∑

β

P (να → νβ) = 1



Recall that for antineutrinos 

- CPT invariance: 

- CP-violation

U → U∗

P (να → νβ) "= P (ν̄α → ν̄β) requires U != U∗(δ != 0, π)

P (να → να) = P (ν̄α → ν̄α) as

∣∣∣∣∣
∑

i

|Uαi |2e−iEit

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

|U∗
αi

|2e−iEit

∣∣∣∣∣

2

Exercise

P (να → νβ) = P (ν̄β → ν̄α)
∣∣∣∣∣
∑

i

UαiU
∗
βie

−iEit

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

UβiU
∗
αie

iEit

∣∣∣∣∣

2
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2-neutrino case

Let’s recall that the mixing is

We compute the probability of oscillation
P (να → νβ) =

∣∣∣∣Uα1U
∗
β1 + Uα2U

∗
β2e

−i
∆m2

21
2E L

∣∣∣∣
2

=
∣∣∣∣cos θ sin θ − cos θ sin θe−i

∆m2
21

2E L

∣∣∣∣
2

= cos2 θ sin2 θ

∣∣∣∣1− cos(
∆m2

21

2E
L)− i sin(

∆m2
21

2E
L)

∣∣∣∣
2

=
1
2

sin2(2θ)
(

1− cos(
∆m2

21

2E
L)

)

= sin2(2θ) sin2(
∆m2

21

4E
L)

(
να

νβ

)
=

(
cos θ − sin θ
sin θ cos θ

) (
ν1

ν2

)

Exercise



The oscillation phase

∆m2
21

4E
L = 1.27

∆m2
21[eV

2]
4 E[GeV]

L[km]

Depending on E, L and ∆m2
21

-                    :  oscillations do not develop  

-                       : oscillatory behaviour observed

-                    : oscillations are averaged out                 

∆m2
21

4E
L! 1

∆m2
21

4E
L ∼ O(1)

∆m2
21

4E
L! 1

P (να → νβ) " 0

P (να → νβ) " 1
2

sin2(2θ)

Exercise



Thanks to T. Schwetz

First oscillation maximum



Properties of 2-neutrino oscillations

● Appearance probability:
 

● Disappearance probability: 

● No CP-violation as there is no Dirac phase in the 
mixing matrix

● Consequently, no T-violation (using CPT):

P (να → νβ) = sin2(2θ) sin2(
∆m2

21

4E
L)

P (να → να) = 1− sin2(2θ) sin2(
∆m2

21

4E
L)

P (να → νβ) = P (ν̄α → ν̄β)

P (να → νβ) = P (νβ → να)



Plan of lecture 1

● Brief history of neutrino oscillations

● Neutrino mixing

● Neutrino oscillations: the basic picture

● Neutrino oscillations: the details

● 2-neutrino oscillations

● 3-neutrino oscillations

● Subtle issues in neutrino oscillations



3-neutrino oscillations

They depend on two mass squared-differences

3 angles and one CPV phase

In general the formula is quite complex

∆m2
21 ! ∆m2

31

θ12, θ23, θ13, δ

P (να → νβ) =
∣∣∣∣Uα1U

∗
β1 + Uα2U

∗
β2e

−i
∆m2

21
2E L + Uα3U

∗
β3e

−i
∆m2

31
2E L

∣∣∣∣
2



Interesting 2-neutrino limits

L~10000 km,
E~1-10 GeV

L= 735 km, E~4 GeV

L~ 1 km, 
E~3 MeV

Thanks to DC 
collaboration (Cabrera)

For a given L, the neutrino energy  determines the 
impact of a mass squared difference. Various limits are 
of interest in concrete experimental situations.

●                    , applies to atmospheric, reactor 
(CHOOZ...), current accelerator neutrino experiments 

∆m2
21

4E
L! 1



The oscillation probability reduces to a 2-neutrino limit:

We use the fact that Uα1U
∗
β1 + Uα2U

∗
β2 + Uα3U

∗
β3 = δαβ

The same we have encountered in the 2-neutrino case

Exercise

P (να → νβ) =
∣∣∣∣Uα1U

∗
β1 + Uα2U

∗
β2 + Uα3U

∗
β3e

−i
∆m2

31
2E L

∣∣∣∣
2

=
∣∣∣∣−Uα3U

∗
β3 + Uα3U

∗
β3e

−i
∆m2

31
2E L

∣∣∣∣
2

=
∣∣Uα3U

∗
β3

∣∣2
∣∣∣∣−1 + e−i

∆m2
31

2E L

∣∣∣∣
2

= 4 |Uα3Uβ3|2 sin2(
∆m2

31

4E
L)



In terms of mixing angles we have

P (νµ → νe; t) = s2
23 sin2(2θ13) sin2 ∆m2

31L

4E

P (νµ → ντ ; t) = c4
13 sin2(2θ23) sin2 ∆m2

31L

4E

P (νµ → νµ; t) = 1− 4s2
23c

2
13(1− s2

23c
2
13) sin2 ∆m2

31L

4E

P (νe → νe; t) = 1− sin2(2θ13) sin2 ∆m2
31L

4E

Exercise



Thanks to T. Schwetz

●                   :  for reactor neutrinos (KamLAND).
The oscillations due to the atmospheric mass squared 
differences get averaged out.

∆m2
31

4E
L! 1

P (ν̄e → ν̄e; t) " c4
13

(
1− sin2(2θ12) sin2 ∆m2

21L

4E

)
+ s4

13



CP-violation will manifest itself in neutrino oscillations, 
due to the delta phase. Let’s consider the CP-asymmetry:

● CP-violation requires all angles to be nonzero.

● It is proportional to the sine of the delta phase.

● If one can neglect        , the asymmetry goes to zero as 
we have seen that effective 2-neutrino probabilities are 
CP-symmetric.

∆m2
21

Exercise

P (να → νβ ; t)− P (ν̄α → ν̄β ; t) =

=
∣∣∣∣Uα1U

∗
β1 + Uα2U

∗
β2e

−i
∆m2

21L

2E + Uα3U
∗
β3e

−i
∆m2

31L

2E

∣∣∣∣
2

− (U → U∗)

= Uα1U
∗
β1U

∗
α2Uβ2e

i
∆m2

21L

2E + U∗
α1Uβ1Uα2U

∗
β2e

−i
∆m2

21L

2E − (U → U∗) + · · ·

= 4s12c12s13c
2
13s23c23 sin δ

[
sin

(
∆m2

21L

2E

)
+ sin

(
∆m2

23L

2E

)
+ sin

(
∆m2

31L

2E

)]



G. Mention et al., 1101.2755

Reactor 
anomaly

LSND

MiniBooNE

4- or 5- neutrino oscillations: sterile 
neutrinos

Various hints of 
oscillations with 

Kopp et al.,  1103.4570

∆m2 ∼ 1 eV2



P (νe → νe) = 1− 4|Ue4|2(1− |Ue4|2) sin2(∆m2L/4E)
P (νµ → νµ) = 1− 4|Uµ4|2(1− |Uµ4|2) sin2(∆m2L/4E)

P (νµ → νe) = 4|Ue4|2|Uµ4|2 sin2(∆m2L/4E)

Disappearance experiments

Appearance experiments

There is a tension between evidence in appearance and 
constraints from disappearance. (see Lasserre’s and Rubbia’s talks)

As the        required to explain these experiments is 
different from          and           , this means that there are 

at least 4 neutrinos. The fourth one needs to be sterile. 
The 2-neutrino limit applies.

∆m2

∆m2
sol ∆m2

A



Plan of lecture 1
● Brief history of neutrino oscillations

● Neutrino mixing

● Neutrino oscillations: the basic picture

● Neutrino oscillations: the details

● 2-neutrino oscillations

● 3-neutrino oscillations

● Subtle issues in neutrino 
oscillations



Energy-momentum conservation

Further theoretical issues on neutrino 
oscillations

Let’s consider for simplicity a 2-body decay:               .

Energy-momentum conservation seems to require:

These two requirements seem to be incompatible. Intrinsic 
quantum uncertainty and localisation of the initial pion lead 

to an uncertainty in the energy-momentum and allow 
coherence of the initial neutrino state. 

π → µ ν̄µ

Eπ = Eµ + E1 with E1 =
√

p2 + m2
1

Eπ = Eµ + E2 with E2 =
√

p2 + m2
2



● If the energy and/or momentum of the muon is 
measured with great precision, then coherence is lost 
and only neutrino ν1 (or ν2) is produced.

● In any typical experimental situation, this is not the 
case and neutrino oscillations take place.

● However for large mass differences, e.g. in presence 
of heavy sterile neutrinos, this situation could arise.

For a detailed discussion see, Akhmedov, Smirnov, 1008.2077.



The need for wavepackets
● In deriving the oscillation formulas we have implicitly 
assumed that neutrinos can be described by plane-waves, 
with definite momentum.

● However, production and detection are well localised 
and very distant from each other. This leads to a 
momentum spread which can be described by a wave-
packet formalism. 

Typical sizes: 
- e.g. production in decay: the relevant timescale is the 
pion lifetime (or the time travelled in the decay pipe), 

∆t ∼ τπ ⇒ ∆E ⇒ ∆p ∆x

For details see, Akhmedov, Smirnov, 1008.2077; Giunti and Kim.



Decoherence and the size of a wave-packet

● The different components of the wavepacket, ν1, ν2 
and ν3, travel with slightly different velocities (as their 
mass is different).

● If the neutrinos travel extremely long distances, these 
components stop to overlap, destroying coherence and 
oscillations.

● In terrestrial experimental situations this is not 
relevant. But this can happen for example for supernovae 
neutrinos.



What have we learnt today?

● We have looked at the basic picture of 
neutrino oscillations and how to compute 
neutrino oscillation probabilities in vacuum 
for 2- and 3- neutrino mixing.

● We have discussed the properties 
(including CP-violation) and implications of 
neutrino oscillations.

● We have mentioned some more subtle 
issues in neutrino oscillations (mass, mixing 
and coherence).

P (να → νβ) = sin2(2θ) sin2 ∆m2L

4E



Plan for tomorrow

● Neutrino oscillations in matter

● Implications of neutrino oscillation 
information on neutrino properties

● Neutrino oscillations in experiments: a 
phenomenological perspective

● Neutrino oscillations in cosmology: the 
example of sterile neutrinos


